
JOURNAL OF APPROXIMATION THEORY 77, 123-138 (1994)

On Approximation by Translates of
Globally Supported Functions

JUNJIANG LEr*

Department of Mathematics, Southern Illinois University,
Carbondale, Illinois 62901

Communicated by Will Light

Received December 2, 1991; accepted in revised form December 4, 1992

We consider Lp-approximation (I ~ p ~ 00) from the dilates of a space generated
by a finite number of functions that have mild polynomial decay at infinity. In
particular, the local-controlled density order of such a family of approximating spaces
is characterized in terms of the Strang-Fix condition. @ [994 Academic Press, Inc.

1. INTRODUCTION

We are interested in approximation from dilates of a shift-invariant
subspace 5=5(1/» of Lp(W) (l~p~oo) generated by a finite family of
functions I/> = {tP l' "" tP N }, which are not necessarily compactly supported
but have a suitable decay rate at infinity. Our results extend recent work
[14 J and a result concerning density of multiresolutions in the paper of Jia
and Micchelli [16].

The integer translates of a function on IR were already considered by
Schoenberg [18] in the 1940s. His work was extended by Strang and Fix
[20J, who characterized the controlled L 2-approximation order provided
by integer translates of a compactly supported function in terms of the
conditions that are now named the Strang-Fix conditions. For the more
general case, where I/> consists of several compactly supported functions, de
Boor and Jia [3 J introduced the notion of local approximation and
characterized the local approximation order in terms of the Strang-Fix
conditions. See [1 J for a systematical treatment of this issue.

The above problem is continuing to receive much attention. Several
authors have investigated the approximation power provided by translates
of a finite number of functions having global support (e.g., [4, 9, 10, 14,
17J), because the recent study with respect to interpolation by radial basis
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functions and the wavelet approximation require such consideration. In
order to obtain a definite order of approximation, in the papers referred to
above, it is assumed that functions ifJ have the decay rate n + k +..1. at 00,

for some ), > -I, namely,

as x -+ 00. (1.1 )

Here we denote by Ilxll the uniform norm of x = (x I' ..., x n ) EIR n given by
maxI ,;;,i';;'n Ixil.

Jia and Micchelli [16] considered the density of the multiresolutions
generated by a function ifJ that satisfies a decay condition weaker than (1.1 ).
To be precise, they introduced the subspace ~ of L p= Lp(W) for
I ~ P~ 00 as follows: Given a function ifJ defined on IR n

, set

jeZn

and (1.2 )

Then ~ is defined to be the linear space of all functions ifJ for which
lifJl p < 00. Equipped with the norm 1·1 p' ~ becomes a Banach space.
Clearly, IlifJll p~ lifJl p' and lifJl p~ lifJl q for I ~ P ~ q ~ 00. This shows that

and for 1,,;;; p ~ q ,,;;; 00.

THEOREM [16]. If ifJE~ (I~p<oo) and LiEznifJ(·-j)=I, then ifJ
provides Lp-approximation of order at least o( 1) for the functions in L p.

An interesting observation concerning Jia and Micchelli's theorem is that
if ¢J satisfies only the weaker decay condition ¢J E .:£P' then the approxima­
tion order guaranteed by the property LiE zn ¢J( . - j) = I is only 0(1), not
(!J(h) as one may expect. Motivated by this observation, we investigate in
this paper the case where the decay condition (1.1) is weakened to be

(1.3)

where I ~ p";;; 00. We denote by .:£~ - 1 the space of the functions ¢J in
Lp(W) having the property (1.3). After discussing the Strang-Fix condi­
tions in Section 2, we show in Section 3 that o(hk

- 1 ) is a lower bound of
approximation provided by a finite number of functions in .:£~ -I satisfying
the Strang-Fix conditions of order k. We also introduce in Section 4 the
notion of the local-controlled approximation order o(hk

-
I

) and show that
this order is already sufficient for the Strang-Fix conditions of order k.

In the rest of this section we introduce some notation to be used
throughout the paper. Let W be the n-dimensional real linear space
equipped with the uniform norm. Given x, YEW, we denote by x· y the
inner product as usual.
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We use the standard multi-index notation. Let N be the set of non­
negative integers. Given an element IY. = (IY. 1, ..., IY.,,) EN", the length of IY. is
defined to be IIY.I := L:7= \ IY.j and the factorial of IY. is IY.! := IY.\! ... IY.,,!' If
IY.=(IY.1, ...,OC,,)EN" and P=(PI, ... ,P,,)EN", we say P~rx. provided Pj~IY.j

for 1~j~n. We also let (p) :=rx.!/Pl (rx.-P)! for P~rx..

Let Z be the set of integers. An element of Z" is called a multi-integer.
A mapping from Z" to iC is called a sequence on Z". Given a sequence c
we denote by Ilcll,

p
the lp-norm of c.

All the functions appearing in the paper are complex-valued and
Lebesgue measurable. For j= 1, ... , n, we denote by Djf the partial
derivative of a given function f with respect to the jth coordinate. In
general, this derivative is in the distribution sense. For y = (y l' ... , }',,) EN"
the differential operator Dr is defined by Dr := D;' ... D~". We denote by D"
the directional derivative given by D" = L:7= \ujDj, for U= (UI> ..., U,,) E W.

We denote by Il =Jl(1f.8.") the linear space of all polynomials on Wand
by Ilk its subspace of all polynomials of (total) degree at most k, where k
is a nonnegative integer. A mapping Ton Il is called degree-reducing if for
any P E Il, Tp is a polynomial of degree less than the degree of p.

Given kEN and 1~ P~ 00, the Sobolev space W; is the set of all
functionsfsuch that Ilfllk,p :=Llyl,;;k IIDYfllp is finite. We denote by Iflk,P
the semi-norm offE W; given by Iflk,p :=Llrl=k IIDlfII p- For a function
f E L], the Fourier transform off is defined to be

](0 :=j f(x) e- iX
{ dx,

R"

2. THE STRANG-FIX CONDITIONS

The Strang-Fix conditions arise in the characterization of the
approximation power provided by translates of functions, because these
conditions yield certain polynomial reproduction properties. In this section
we consider the Strang-Fix conditions and their equivalent forms for
globally supported functions r/J E ~7 - 1, with no restriction on the
continuity of these functions. As usual, the basic tool in the analysis of the
Strang-Fix conditions is the Poisson summation formula, which may be
formulated as follows,

I r/J(x - j) = I ¢(2nj) e -i27<jx (2.1 )
jE Z"

holds for almost every x E 1f.8.".

jE Z"
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Proof Since (,bEL](W), we have

f L l(,b(x - ))1 dx =f 1q}(x)1 dx < 00.
[0. l)n j E zn ~n

Therefore the function

f(x):= L (,b(X - ))
jE zn

(2.2 )

is defined for almost every XE [0, It and is I-periodic. We refer tofas the
periodization of (,b. By Lebesgue's dominated convergence theorem, the
Fourier coefficient J(j) for) E 7L n is

J(j) := f f(x) e-i21tjx dx
[0, ,)n

= L f (,b(x - f3) e-
i21tj

x dx
(i E if" [0,1 )n

= f (,b(x) e-i2njx dx = ~(27T.)).
~n

Thus f has the following Fourier series expansion on [0, 1y:

f(x) ~ L ~(27T.)) ei21tjx.

jE 1Ln

(2.3 )

Since ~(27T.' ) 1zn E /, (7L n
), the Fourier series in (2.3) converges absolutely for

every x E jRn. The sum of this series equals f a.e. on jRn (see, e.g., [19,
Chapter 7, Corollary 1.8]). This proves (2.1). I

Let us next consider the Strang-Fix conditions for one function. Let k be
a positive integer. Recall that the linear space 2'7 - 1 consists of those
functions (,b on W for which the function given by x ........ (1 + Ilxll)k - 1 (,b(x)
is in L](lRn). Let (,bE2'7- J

• For any txENn, Itxl~k-l, the function q),
given by

(,b,(x) := (-x)' (,b(x),

is in L 1(IR n
). Its Fourier transform is

~,(~) = (-iD)' ~(~), ~EW. (2.4 )

A function (,b E2'7 - 1 is said to satisfy the Strang-Fix conditions of order
k, provided its Fourier transform satisfies the following conditions:

~(O) = 1 (2.5 )
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Da.~(2nj)=O forall lal <kandjEr\{O}. (2.6)

Let e be a sequence on 7L n such that leU)1 ~M(l + 11J11l- 1 for alljE7L n
,

where M is a constant independent of j. In this case the sum LjE zn
~(x - j) cU) converges at almost every x E W, and the semi convolution of
~ and c is defined to be

~.' c:= L ~(. - j) c(j).
je Z"

THEOREM 2.2. A function ~ E g'~ - 1 satisfies the Strang-Fix conditions of
order k if and only if the mapping 1- ~.' is degree-reducing on ilk _ I'

Proof Suppose ~ satisfies the Strang-Fix conditions of order k. Then
by (2.4) and (2.6) we have

forall jE7Ln \{O} and jal <k.

(2.7)

Let fa. be the periodization of ~a.:

fa. := L ~a.(' - j).
je Z"

Applying the Poisson summation formula, we find that fa. equals the
constant ~a.(O) a.e. on IR n

• In particular, fo = 1 a.e. on W, for ~o(O) =
~(O) = 1 by (2.5). By the binomial theorem we have

ja.=(x+(j+x))a.= L (pa) xa.-P U-x)P.
p,;;a.

It follows that

~.' ( )a. = L (a) xa.-P~p.' 1,
P,;; a. p

where ( )Y stands for the monomial x f---+ x Y• But for p~ a and lal < k,

~p.' 1= fp = ~p(O).

This together with (2.7) implies that (1 - ~.')( )a. is a polynomial of
degree < IIX I, as desired.

Suppose conversely that the mapping 1 - ~.' is degree-reducing on
ilk _ l' We show that ~ satisfies the Strang-Fix conditions of order k. Let
IIXI < k. Using the binomial theorem again, we obtain

fa.(x)= L (j-x)a.~(x-j)= L (plX)(_Xy-p~.,( )p.
jE Z" fJ ~a

64IJ17712-2
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Hence f, is a polynomial by the assumption. But f, is I-periodic, so f, must
be a constant. Thus the Fourier coefficients J,U)=O for all jEZn\{O}.
From the proof of Lemma 2.1 we see that

This together with (2.4) verifies the condition (2.6). Applying the Poisson
summation formula to ,p, we obtain

1 =,p *' 1 = ~(O).

This verifies the condition (2.5). I

We mention that Theorem 2.2 was first proved by Strang and Fix in
[20J for a compactly supported function. See [1, 5, 7, 13 for various
interesting extensions of Strang and Fix's result.

In what follows, we consider the Strang-Fix conditions for several
functions. Let ,p:= {,pI' ..., ,pN} be a finite collection of functions from
.se~- I. We denote by So( 11» the space of the finite linear combinations of
functions in 11> and their integer translates. The collection 11> is said to
satisfy the Strang-Fix conditions of order k provided there exists a function
,p in So( 11» satisfying the Strang-Fix conditions (2.5) and (2.6) of order k.

COROLLARY 2.3. A finite collection et> from .se~ - I satisfies the
Strang-Fix conditions of order k if and only if there exists a t/J E So( 'P) such
that the mapping t/J *' is the identity on Ilk - I'

Proof The sufficiency is an immediate consequence of Theorem 2.2. To
show the necessity we also apply Theorem 2.2. It follows that there is a
function p E So( et» such that the mapping 1 - p *' is degree-reducing on
Ilk-I' It remains to show that there exists a finite linear combination t/J of
p and its integer translates such that t/J *' is the identity operator on Ilk _ I .

This was already proved in [14, Lemma 2.6J for the case where the
functions in et> satisfy the condition (1.1). That proof can be carried over
verbatim for the present setting. I

3. LOWER BOUNDS FOR ApPROXIMATION ORDER

Let k be a positive integer, 1~ p ~ 00, and et> = {,pI' ... , ,pN}a finite sub­
set of .se:- I

. We denote by S(et» the closure of So(et» in L p • Furthermore,
the h-scaling of S(et», h > 0, is denoted by Sh( et», namely,
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where (Jh is the scaling operator (Jh:f~f( ·/h). In this section our goal is
to estimate lower bounds for the approximation order provided by
{Sh( <P): h > 0 }. The main result is the following:

THEOREM 3.1. Let <P be a finite collection of functions in !l'~ - 1. If <P
satisfies the Strang-Fix conditions of order k, then for 1 :::; p < 00

dist(j, Sh( <P)p := inf{ II f - gil p : g E Sh( if»}

=0(hk
-

1
), forall fE W;-l.

Proof This theorem is a consequence of Corollary 2.3 and Theorem 3.4
that is proved later.

To handle Lp-approximation (1:::; p < 00), we apply a smoothing
technique as employed in [14]. Let X be an element of C;:"'(W) such that
supp Xc [ -1, 1]n, X~ 0 and JX= 1. Set

Xh := X(-/h )/hn
, h > O.

For a given functionfELp(W) (I:::;p:::;oo) and h>O, define

(3.1 )

Clearly the operator J h commutes with difference and differential operators.
In the univariate case (n = 1), such a smoothing technique was employed
by DeVore [8] in studying degree of approximation. In the multivariate
case, this scheme was used by Jia [12], and then developed in the recent
work [14]. The following lemma is quoted from [14].

LEMMA 3.2. For f E Lp(W) (1:::; p:::; 00), the functions fh := Jhf are
C xc -smooth. Moreover, there exists a constant C depending only on k and n
such that

for 1:::; p < 00.

The next lemma says that Jhf = fh is a good approximation of f when
h is small.

LEMMA 3.3. For all 1 :::;p< 00, O:::;m:::;k-l, andfE W;-l, we have

as h -+ O.
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A proof for a similar result can be found in [14]. That proof with a
simple modification may be used for the present case as well.

We are now in a position to complete the proof of Theorem 3.1. To this
end, by virtue of Corollary 2.3, we need only prove the following:

THEOREM 3.4. Let ¢JE!f>;-I. For fE W:-1(lR n
) (1 ~p< (0) and h>O,

set

je ZlI

as h -0.

Proof By Lemma 3.3 we have

Hence it remains to show that

II fh - Qhf II p = o(hk - I ).

Observe that with 1:= [0, Ir, for any gELp(lRn),

IIgII ~ = L f Ig(xW dx = f L Ig(x + hiXW dx.
> E z· h(l- » hI > E Z·

Taking g to be fh - Qhf in the above, we obtain

(3.2 )

where ax := 7L n
- iC denotes the sequence given by the rule

for each h >°and x E hI.
Clearly we need to estimate the Ip-norm of the sequence ax for x E hI. To

do this, we keep h > °and x E hI fixed for the moment. For each (E IR n and
g E C k

( IR n
), let A, g be the Taylor polynomial of g of degree k - 1 about (.

Since ¢J *' is the identity on n k _ l' we have

P = L p(hj) ¢J( -/h - j),
jeZ"

for all pEnk_ I .
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Then it follows that

aAa) = (fh - Qhf)(X + ha)

= (Ax+hJh - Qd)(x + ha)

= L (A x + hJh - fh)(h}) ¢>(xlh + a - i),
jeZ"

After a change of variables v :=} - a, the above equation becomes

131

aAa) = L bAa, v) ¢>(xlh - v), (3.3 )
V E 7L"

where

Next, we estimate the lp-norm of bA·, v). We first assume that k ~ 2.
Observe that for every a E 7L n

, the Taylor polynomial of the function A x + h,

fh - fh of degree k - 2 about x + hrx is zero, and hence bAa, v) is equal to
the corresponding remainder evaluated at the point y = hv + ha. Then by
Taylor's remainder formula,

1 (1 _ t)k - 2

bAa, v) = fa D~\:-_\(Ax + hJh - fh)(X + hrY. + t(hv - x» (k _ 2)! dt.

It is easy to see that for any smooth function g and vectors ~, (E IR n
, we

have

D~-IA,g(z)=D~-lg(O forall ZEW.

Applying this formula to g = fh' ~ = hv - x, and (= x + ha, we get

D~v-_IxA x+ hJh(X + ha + t(hv - x» = D~\:-_\fh(X + ha).

Therefore

I (1- t)k-2
bAa, v)=t Dt-_1x(fh(x+ha)- fh(x+ha+t(hv-x») (k-2)! dt

1 (l-t)k-2
=LDZv-_\V/(x_hvJh(x+ha) (k-2)! dt.

Furthermore, since the operator J h commutes with difference and
differential operators, we see that

(3.4 )
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Applying the generalized Minkowski inequality yields

(2.5)

VEZ n
,

where gl denotes the restriction of a continuous function g to zn. By
Lemma 3.2 we have

for every v E 7L n and t E [0, 1], where C 1 is a constant depending only on
k and n. It follows from (3.5) that there exists a constant Cz dependent
only on k and n such that

1)'1 ~k-l

for every vE zn and t E [0, 1], where Wk stands for the modulus of smooth­
ness defined by

wm(g,r)p:= sup L IID;'Vz gil p'
Ilzll ,;; T 1)'1 ~ m - I

for g E W;(IR") and a positive integer m. Then it follows that

Ilb
T

( " v)llf
p

::( Chk- I n/pwdJ, fix - hvll)p Ifx/h - vii k- I,

V E r, x E [0, h]n (3.6)

for some constant C dependent only on k and n. Although (3.6) was
proved for the case k ~ 2, it also holds for k = 1. For, if k = 1,

from which (3.6) follows.
By virtue of (3.6), applying the Minkowski inequality to (3.3), we obtain

Ilaxlllp::(Chk-l-n/p L wk(J, Ilx-hvll)p IljJ(x/h-v)l, (3.7)
VE zn
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(3.8)

For each positive integer M, the sum LVEZ" can be split into two sums:
Lllv!I<:M and Lllvll;;>M' We use the inequality

for the case II vII < M and use the estimate

Wk(f, IIx-hvll)p~21fIk_l.p

for the case II vII ~ M. Then (3.7) yields

where t/J0 is given by (1.2), and

t/JM:= L 1t/J(·-j)l.
IIjll;;>M

(3.10)

In the rest of the proof we estimate the quantity (jhI Ilaxll f dX)I/p. It is
clear that II t/J0( ./h )11 p (hI) = hn/

p It/JI p and Iit/J M (-/h )11 p (hI) = hnfp II t/JM II p (I).
This, together with (3.9), yields

(3.11 )

for all positive integers M. In view of (3.8) and the fact that ¢JE'p;-I, we
conclude that I/; E.!l'p. Hence 11/;1 p< GO and III/;M II p (I) -/> 0 as M -/> GO. It
follows from (3.11) that

f (1Iaxllfpdx)I/Pdx=o(hk-l),
hl

if we choose M to be the integer part of 1/~. The theorem is proved. I

Remark 3.5. In a similar way, we can show that the estimate given in
Theorem 3.1 is also valid for p = 00 if, in addition, the function f to be
approximated is in W~-lnCk-l, and the functions ¢JsEif>s satisfies that
Iit/J~ II 00 ([0, 1n -+ 0 as M -+ 00, S = 1, ..., N, where t/J s and t/J~ are given in
the same fashion as in (3.8) and (3.10), respectively.
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4. THE LOCAL-CONTROLLED ApPROXIMATION ORDER

From [11] we see that the converse of Theorem 3.1 is not true
in general. However, as was mentioned before, Strang and Fix [20]
succeeded in characterizing the controlled approximation order provided
by one compactly supported function and de Boor and Jia [3] in charac­
terizing the local approximation order provided by finitely many
compactly supported functions. In what follows, we introduce the notion
of local-controlled approximation, which appeared in [7] in a different
version and terminology. In this section we characterize the local-controlled
approximation of order o(hk

- I). The authors of [10] considered local­
controlled Loo"pproximation in a different version, by giving a characterization
result, in which the approximation order (!)(h k

) is required.
Let k be a positive integer, 1~ P ~ 00, and let ep = {¢J 1, ... , ¢J N } be a finite

collection of functions in .!f~ - I. We say that ep provides local-controlled
Lp-approximation of order o(hk

-- I ) if each fEW; - 1 there exist sequences
c;Elp , h>O, s= I, ..., N, such that

(i) IIf-O"h(L:~~,(¢J, *' c;»h-n/Pllp=o(hk.I), as h-...O,

(ii) lie; II,p ~ C II f II p' s = 1, ..., N, and

(iii) dist(hv, supp f) > r => c;(v) = 0, s = 1, ..., N,

for some constants C and r independent h.

THEOREM 4.1. Let ep = {¢J I' ... , ¢J N } be a finite collection of functions in
.!f~ - I, where 1~ p < 00. Then ep provides local-controlled Lp-approximation
of order o(hk . I) if and only if it satisfies the Strang-Fix conditions of order
k; this characterization is also true for the case p = 00, if the conditions in
Remark 3.5 are satisfied.

Proof It remains to prove the necessity. Along the line of [6], this was
proved in [14] for the case when the following stronger conditions are
satisfied: the approximation order is at least (!)(h k

) and the functions in ep
satisfy the decay condition (1.1). Some modification of that proof has to be
made for the present case. We thus give the outline of the proof for the
necessity.

We approximate a tensor product of univariate B-splines-namely, the
function

n

u(x):= IT Mk+l(x,),
'~I
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(4.1 )

where M k + I is the well-known B-spline whose Fourier transform is given
by

~ _ (Sin(tI2))k+ I

Mk+l(t)- tl2 .

Since U E W;(W), we can find sequences c; (s = 1, ... , N, h > 0) so that the
conditions (i), (ii), and (iii) are satisfied. Let

and set gh := U- Uh' Then the property (i) implies that

as h -. O.

We claim that

as h-.Ofor IIXI =m~k-1. (4.2)

To this end we apply the differential operator DIY. to gh and obtain

It follows that

for IIXI =m.

Let R:= r + k. Since the support of U is included in the ball
{x E W: 11.1'11 ~ k}, by the property (iii) we have

for IIvhll > R. (4.3 )

Write

J=f 1I.1'llmlgh(x)ldx+f 1I.1'll m lgh(.1')ldx=:J I +J2 •
IIxll < 2R Ilxll ;. 2R

Applying Holder's inequality to the first integral J I , we obtain

where q is the exponential conjugate to p, i.e., lip + llq = 1.
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Let us next estimate J2 • The fact that u(x)=O for IIxll ~ Rand (4.3) yield

N

gh(X) = L: 2: h-njPc;(v) rPs(x/h - v),
s ~ 1 Ilhvll';; R

Consequently,

for [[xII ~ 2R.

J2~f IIxll k
-

1 Igh(X)1 dx
IIxll ;. 2R

N

~h-njp L L 1c;(v)1 f Ilxll k
-

1 liPs(x/h-v)1 dx
s= 1 IIhvll';; R Ilxll ;. 2R

N

= hk - 1 +n!q L
s= 1

L Ic;(v)1
IIhvll';; R

xf Ily + vll k
-

1 liPs(y)1 dy,
IIY + vii> 2Rjh

(4.4 )

where we have made the change of variables y = x/h - v in the last equality.
To estimate the above integral we note that the inequalities Ilyll/2 ~

Ily + vii ~ 2 Ilyll hold, if IIY + vii ~ 2R/h and Ilvll ~ R/h. Then

= 2k
-

1 f Il/Is(y)1 dy ~ flh,
IIY'I ;;.R!h

where 1/1 s := (l + 11·11 )k- I iPs and

It follows that

N

J2~hk-l+n!qflh I I 1c;(v)l.
s~ I Ilhvll,;;R

Since c; satisfy the condition (ii), by Holder's inequality we have

Combining this with (4.5), we get

(4.5)
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for some constant C independent of h. Since t/J s E .5t;, c ~ = L I' S = 1, ..., N,
we have JRlh It/JAy)1 dy~O; hence Jlh~O as h~O. Therefore J 2 =o(hk

-
l

)

follows. To summarize, we have proved our claim (4.2).
It follows from (4.1) that

u(~) = n(Sin(~d2»)k+ I,

1=1 ~d2

Hence

u(O) = 1

and

(4.6)

lim D"'u(~/h )/h k
- 1 = 0

h_O
for ~ E W\ {OJ and loci < k. (4.7)

Recall that gh = U - uh . Thus (4.2), (4.6), and (4.7) together yield

lim Uh(O) = 1
h_O

and

(4.8 )

lim D"Uh(~/h )/hk
- 1 = 0

h_O
forall ~EW\{O}andl(Xl<k. (4.9)

It remains to show that the properties (4.8) and (4.9) imply the Strang-Fix
conditions of order k. A proof for this implication can be found in
Ref. [15]. The proof of the theorem is thus complete. I

It is clear that the approximation scheme given in Theorem 3.4
satisfies both the conditions (ii) and (iii). Therefore the combination of
Theorems 3.1 and 4.1 gives a characterization of the local-controlled
Lp-approximation order o(h k -I) provided by finitely many functions
from ..'l'~-l.

Remark. After completing this work, we learned that de Boor et at.
obtained in [2J a complete characterization of closed shift-invariant spaces
of L 2( /R n

), which provide L2-approximation of order k or density order
k - 1. The concept of approximation order o(hk

-
1

) appearing in the
present paper coincides with that of density order k - 1 introduced in [2].
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